副高级
当前位置: 首页 > 师资队伍 > 教师队伍
邢庆子
副教授

博士、副教授

电 话: 010-62781684

邮 箱: xqz@tsinghua.edu.cn

  • 教育背景
  • 工作经历
  • 教学工作
  • 研究领域
  • 研究概况
  • 学术成果
  • 学术兼职
                                                   

1998.09—2003.12 清华大学工程物理系,获得核技术及应用专业工学博士学位

1994.09—1998.07 清华大学工程物理系,获得工程物理专业工学学士学位

2019.08至今 清华大学工程物理系,长聘副教授

2016.08—2019.07 清华大学工程物理系 ,准聘副教授

2009.01—2016.07 清华大学工程物理系,副研究员

2008.01—2008.03 日本KEK访问学者,助理研究员

2006.04—2008.12 清华大学工程物理系,助理研究员

2004.01—2006.03 清华大学物理系,博士后


讲授《电动力学》、《电磁场数值计算》本科生课程;

负责本科生《专业基础实验(2)-微波实验》,指导博士生9名,其中已毕业3名;

指导硕士生5名,其中已毕业4名。


核科学与技术学科,研究方向为质子和重离子直线加速器物理及工程。

自1998年起,长期围绕质子及重离子直线加速器物理及应用开展研究。秉承技术创新与工程建设相结合的理念,创新思想和核心技术引领学科发展的思路。面向国家重大需求,负责研制成功重大科技基础设施——西安200MeV质子应用装置直线注入器的射频四极(RFQ)加速器和Alvarez型漂移管直线加速器(DTL),为填补我国空间质子辐射模拟实验专用装置空白提供重要技术支撑;面向人民生命健康,负责研制成功国家重点研发计划项目“基于同步加速器的质子放疗系统”的核心系统质子注入器,实现医用质子直线加速器的国产化突破。在掌握核心技术基础上实现技术创新:国内首次研制出四翼型变电压RFQ加速器,建成功率芯片质子注入平台和国内首台基于小型加速器的冷中子源,支撑质子和中子学科建设;提出并实现高功率RFQ稳频技术,成功应用于美国重大科技基础设施;提出低功率紧凑型RFQ“逐单元优化”方法,可应用于基于加速器的硼中子俘获治疗装备。


2024年—2026年,微波驱动的电子回旋共振离子源关键问题研究,无锡市锡山区科学技术局,项目负责人

2024年—2026年,微波驱动的电子回旋共振质子源研制,国电投核力电科(无锡)技术有限公司,项目负责人

2023年—2026年,FRIB备用RFQ服务协议,美国密西根州立大学,项目负责人

2023年—2025年,FRIB RFQ加速器高频和水冷系统物理设计和调谐,上海磁稳机械设备科技有限公司,项目负责人

2023年—2025年,重离子实验平台初步设计,项目负责人

2020年—2023年,强流低发射度增长的重离子IH-DTL关键物理问题的研究,国家自然科学基金委面上项目,项目负责人

2018年—2020年,质子放疗系统直线注入器设计,上海艾普强粒子设备有限公司,项目负责人

2017年,质子放疗系统直线注入器技术方案设计,上海艾普强粒子设备有限公司,项目负责人

2016年—2018年,漂移管,项目负责人

2016年—2017年,传输段研制,项目负责人

2016年—2017年,四极加速器,项目负责人

2016年—2019年,强流高占空比RFQ加速器水冷分析与设计的研究,国家自然科学基金委面上项目,项目负责人

2013年—2015年,FRIB RFQ加速器高频和水冷系统物理设计和调谐,上海克林技术开发有限公司,项目负责人

2013年—2015年,FRIB RFQ服务协议,美国密西根州立大学,项目负责人

2012年—2015年,强流质子直线加速器前端关键技术及其RAMI技术的研究,国家自然科学基金委重大研究计划重点项目,协助负责人

2012年—2015年,四翼型变电压RFQ加速器场调谐方法的研究,国家自然科学基金委面上项目,项目负责人


[1] C.B. Yue, P.F. Ma, B.C. Wang, W.L. Liu, et al., Beam dynamics design of a proton/heavy-ion injector for the synchrotron of the XiPAF upgrading project, Nucl. Instrum. Methods Phys. Res., Sect. A 1076, 170537(2025).

[2] M.Z. Tuo, B.C. Wang, W.L. Liu, X. Zhuo, et al., Research on a high-current CW proton hybrid accelerating cavity incorporating coupled four-vane RFQ and CH DTL structures, 2025 JINST 20 P05047.

[3] W.L. Li, K. Liu, C.B. Bi, Y.S. Fan, et al., Generation of a transversely uniform high-current proton beam with variable central energy, 2025 JINST 20 P08012.

[4] 范永山,杜畅通,张化一,郑曙昕 等. XiPAF重离子同步加速器超高真空系统的设计,工程科学与技术,2025,57(1):339~346

[5] 范永山,杜畅通,张化一,郑曙昕 等. 不锈钢管道的比放气率研究,真空科学与技术学报,2024,44(9):797~804

[6] K. Liu, C.B. Yue, P.F. Ma, et al., Field stability of an Alvarez-type drift tube linear accelerator with small drift tubes, Nucl. Instrum. Methods Phys. Res., Sect. A 1066, 169586(2024).

[7] 马鹏飞,岳灿彬,王百川,周浩 等. 交叉指型磁模漂移管重离子直线加速器设计. 现代应用物理,2024,15(1):010406

[8] 王忠明,王敏文,闫逸华,王百川 等. 西安200 MeV质子应用装置开放运行情况及下一步升级改造计划. 现代应用物理,2024,15(4):040402

[9] C.B. Yue, P.F. Ma, Q.Z. Xing, B.C. Wang, et al., Physical design of the injector for XIPAF-upgrading. Proceedings of LINAC2024. THPB092.

[10] S. Wang, Y. Lei, X.D. Yu, et al., RF measurement and tuning for an Alvarez-type drift tube linear accelerator without post couplers, Nucl. Instrum. Methods Phys. Res., Sect. A 1053, 168372(2023).

[11] 刘坤,岳灿彬,李文亮 等. 用于质子治疗的直线注入器物理设计与实验,第四届中国粒子加速器会议,哈尔滨,2023年8月

[12] S. Wang, Q.Z. Xing, S.X. Zheng, et al., Assembly, alignment and tuning of the XiPAF DTL, Proceedings of IPAC23. MOPM138.

[13] 刘志凯,程炜诗,吴王锁,梁天骄 等. 硼中子俘获疗法的原理及临床应用,协和医学杂志,2023,14(4):698~705

[14] Z.M. Wang, W. Chen, M.T. Qiu, Y.H. Yan, et al., Construction and beam commissioning of a compact proton synchrotron for space radiation environment simulation, Nucl. Instrum. Methods Phys. Res., Sect. A 1027, 166283(2022).

[15] Z.M. Wang, Y. Yang, W.L. Liu, B.C. Wang, et al., Commissioning of the 7 MeV H− linac injector for a 200 MeV proton synchrotron, Nucl. Instrum. Methods Phys. Res., Sect. A 1040, 167244(2022).

[16] P.F. Ma, B.C. Wang, X.D. Yu, Y.L. Wang, et al., Beam-dynamics design of a 2 MeV/u heavy-ion IH-DTL with electromagnetic quadrupole structure, Nucl. Instrum. Methods Phys. Res., Sect. A, 1027, 166298(2022).

[17] P.F. Ma, R. Tang, Y. Yang, S.X. Zheng, et al., Development of a compact 325 MHz proton interdigital H-mode drift tube linac with high shunt impedance, Phys. Rev. Accel. Beams 24, 020101(2021).

[18] K. Liu, X.D. Yu, P.F. Ma, Y. Lei, Q.Z. Xing, et al., Physical design of a compact 2 MeV deuteron radio-frequency quadrupole, Nucl. Instrum. Methods Phys. Res., Sect. A 1009, 165455(2021).

[19] P.F. Ma, Q.Z. Xing, R. Tang, W.B. Ye, et al., Beam commissioning of a 325 MHz proton IH-DTL at XiPAF, Proceedings of IPAC21. TUPAB168.

[20] M.Z. Tuo, Q.Z. Xing, X.L. Guan, S.X. Zheng, et al., Beam dynamics design of a synchrotron injector with laser-accelerated ions, Proceedings of IPAC21. WEPAB198.

[21] P.F. Ma, X.D. Yu, Q.Z. Xing, R. Tang, et al., Decouple transverse coupled beam in the DTL with tilted PMQs, Proceedings of IPAC21. TUPAB170.

[22] P.F. Ma, Q.Z. Xing, X.D. Yu, S.X. Zheng, et al., Linear transfer matrix of a half solenoid, Proceedings of IPAC21. TUPAB171.

[23] P.F. Ma, Q.Z. Xing, X.D. Yu, Y. Lei, et al., Overall concept design of a heavy-ion injector for XIPAF-upgrading, Proceedings of IPAC21. TUPAB169.

[24] P.F. Ma, Y.L. Wang, X.D. Yu, Q.Z. Xing, et al., Quadrupole magnet design for a heavy-ion IH-DTL, Proceedings of IPAC21. TUPAB172.

[25] 王忠明,陈伟,邱孟通,闫逸花 等. 西安200MeV质子应用装置的建设及调试. 现代应用物理,2021,12(3):030401

[26] 王百川,王忠明,刘卧龙,邢庆子 等. 西安200MeV质子应用装置负氢离子源及低能束流传输线实验研究. 现代应用物理,2021,12(3):030402

[27] 于旭东,马鹏飞,王百川 等. 西安200 MeV质子应用装置射频四极加速器的设计与测试. 现代应用物理,2021,12(4):040403

[28] P.F. Ma, S.X. Zheng, X.D. Yu, R. Tang, et al., Decoupling a transversely-coupled beam based on symplectic transformation theory and its application, Nucl. Instrum. Methods Phys. Res., Sect. A 968, 163925(2020).

[29] Y. Lei, C. Cheng, Y. Yang, et al., Design and realization of a single klystron-based radio frequency system for a radio frequency quadrupole and a drift tube linac, Nucl. Instrum. Methods Phys. Res., Sect. A 972, 164136(2020).

[30] R. Tang, Q.Z. Xing, et al., IH-DTL design with modified KONUS beam dynamics for a synchrotron-based proton therapy system, Nucl. Instrum. Methods Phys. Res., Sect. A 920, 50~57(2019).

[31] C.Y. Wang, Y.S. Xiao, Q.Z. Xing, et al., Design of a low-energy proton facility for space radiation effect research based on a compact neutron source, Nucl. Instrum. Methods Phys. Res., Sect. A 932, 77~82(2019).

[32] M.W. Wang, Q.Z. Xing, S.X. Zheng, et al., Beam position monitors as precise phase pickups for beam energy measurement at the Compact Pulsed Hadron Source, NUCL SCI TECH 30:23(2019).

[33] Y. Zou, Q.Z. Xing, S.X. Zheng, et al., Application of the asynchronous advantage actor-critic machine learning algorithm to real-time accelerator tuning, NUCL SCI TECH 30:158(2019).

[34] P.F. Ma, X.D. Yu, Q.Z. Xing, et al., Primary beam dynamics design of a heavy-ion IH-DTL with electromagnetic quadrupoles, Proceedings of IPAC19. MOPTS111.

[35] Y. Lei, S.X. Zheng, Q.Z. Xing, et al., Tuning of a tapered ridge-loaded waveguide coupler for a drift tube linac of the compact pulsed hadron source, Proceedings of IPAC19. WEPRB039.

[36] P.F. Ma, Q.Z. Xing, X.D. Yu, et al., Matrix approach to decouple transverse-coupled beams, Proceedings of IPAC19. MOPTS112.

[37] B.C. Wang, S.X. Zheng, Q.Z. Xing, Z.M. Wang, et al., Measurements of the integrated gradient for Halbach-type permanent magnet quadrupoles, Nucl. Instr. and Meth. A 928, 1~6(2019).

[38] M.W. Wang, Q.Z. Xing, X.L. Guan, Z.M. Wang, et al., An online bunch length and momentum spread measurement method based on multiple BPMs, Nucl. Instr. and Meth. A 916, 77~82(2019).

[39] Q.Z. Xing, X.D. Yu, Q.K. Guo, P.F. Ma, et al., Field tuning and rf measurements of a four-vane radio frequency quadrupole with ramped inter-vane voltage, Phys. Rev. ST Accel. Beams 22, 020102(2019).

[40] Y. Lei, Q.Z. Xing, B.C. Wang, S.X. Zheng, et al., Radio frequency measurement and tuning of a 13 MeV Alvarez-type drift tube linac for a compact pulsed hadron source, Rev. Sci. Instrum., Vol. 90, 013302(2019).

[41] Q.K. Guo, S.X. Zheng, C.T. Du, K.D. Man, L. Jian, Q.Z. Xing, The alignment of the drift tube linac for the Compact Pulsed Hadron Source, Proceedings of IWAA18, Illinois, USA, 2018.

[42] Y. Lei, S.X. Zheng, Q.Z. Xing, R. Tang, et al., Experimental study of tuning method on a model alvarez DTL cavity for cphs project. Proceedings of LINAC18. THPO034.

[43] P.F. Ma, Q.Z. Xing, R. Tang, Y. Lei, et al., Error study of CPHS DTL after assembly. Proceedings of LINAC18. THPO036.

[44] R. Tang, W.B. Ye, P.F. Ma, Y. Lei, S.X. Zheng, Q.Z. Xing, et al., Tuning and low power test of the 325 MHz IH-DTL at Tsinghua University. Proceedings of LINAC18. THPO035.

[45] X.D. Yu, Q.Z. Xing, Q.K. Guo, P.F. Ma, et al., Tuning of a four-vane RFQ for Xi'an 200 MeV proton application facility. Proceedings of LINAC18. THPO064.

[46] Q.Z. Xing, X.D. Yu, C. Cheng, T.B. Du, et al., Development progress of the H+/H- linear accelerators at Tsinghua University. Proceedings of LINAC18. THPO022.

[47] 马鹏飞,邢庆子,王致远,吴华锐 等,清华大学微型脉冲强子源进展与应用. 第三届全国辐射物理学术交流会论文集. 2018.

[48] 于旭东,邢庆子,马鹏飞,郭乾坤 等,西安200MeV质子应用装置射频四极加速器的冷测和调谐. 第九届全国加速器微波、高频技术研讨会论文集. 2018.

[49] 马鹏飞,郑曙昕,于旭东,唐若,邢庆子 等,质子放疗系统直线注入器物理设计. 第十一届全国医用加速器学术交流会会议文集. 2018.

[50] R. Tang, S.X. Zheng, Q.Z. Xing, et al., Mechanical design and error analysis of a 325 MHz IH-DTL test cavity. Proceedings of IPAC18. TUPAL075.

[51] Y. Lei, S.X. Zheng, Q.Z. Xing, et al., High-power RF test of coaxial couplers for the injection linac of XiPAF. Proceedings of IPAC18. THPAL110.

[52] P.F. Ma, Q.Z. Xing, et al., Conceptual design of a drift tube linac for proton therapy. Journal of Physics: Conf. Series, Vol. 1067, 052011.

[53] R. Tang, Q.Z. Xing, et al., IH-DTL design with modified KONUS beam dynamics for a synchrotron-based proton therapy system, Nucl. Instrum. Methods Phys. Res., Sect. A 920, 50~57(2018).

[54] P.F. Ma, S.X. Zheng, X.D. Yu, Y. Lei, R. Tang, Q.Z. Xing, et al., Physical design of a single-amplifier-driven proton linac injector for a synchrotron-based proton-therapy system in China, Nucl. Instrum. Methods Phys. Res., Sect. A 900, 32~39(2018).

[55] Q.Z. Xing, L. Du, X.L. Guan, C.X. Tang, et al., Transverse profile tomography of a high current proton beam with a multi-wire scanner, Phys. Rev. ST Accel. Beams 21, 072801(2018).

[56] Q.Z. Xing, J. Zeng, S.X. Zheng, J. Li, et al., RF-induced frequency-shift resistant design of the resonant cavity of the radio frequency quadrupole with the high average-power operation, Nucl. Instrum. Methods Phys. Res., Sect. A 904 117~123(2018).

[57] Y. Lei, S.X. Zheng, Q.Z. Xing, et al., Power-conditioning cavity design and measurement of the coaxial coupler for the injector of XIPAF project. Proceedings of IPAC17. THPIK055.

[58] M.W. Wang, Q.Z. Xing, et al., 2D beam profile monitors at CPHS of Tsinghua university. Proceedings of IPAC17. MOPAB076.

[59] Q.Z. Xing, et al., Development progress of the 7MeV Linac injector for the 200MeV synchrotron of Xi’an proton application facility. Proceedings of IPAC17. TUPVA105.

[60] R. Tang, Q.Z. Xing, et al., Design of the low energy beam transport line for Xi'an proton application facility. Proceedings of IPAC16. TUPMR041.

[61] Q.Z. Xing, S.X. Zheng, X.L. Guan, C. Cheng, et al., Present status of the high current linac at Tsinghua University and its application. Proceedings of HB2016. WEAM3Y01.

[62] Q.Z. Xing, et al., Design of the 7MeV linac injector for the 200MeV synchrotron of the Xi’an Proton Application Facility. Proceedings of IPAC16. MOPMW014.

[63] X.W. Wang, Q.Z. Xing, et al. Delivery of 3-MeV Proton and Neutron Beams at CPHS: A Status Report on Accelerator and Neutron Activities at Tsinghua University. Physics Procedia, 60(2014): 186~192

[64] 唐若,邢庆子,杨征,郑曙昕,等. 基于清华大学13MeV质子直线加速器的空间辐射效应研究平台的建设. 第一届全国辐射物理学术交流会. 2014.

[65] Q.Z. Xing, C. Cheng, C.T. Du, L. Du, et al., Present status of the 3MeV proton linac at Tsinghua University. Proceedings of LINAC14. THPP137.

[66] L. Du, C.T. Du, X.L. Guan, C.X. Tang, R. Tang, X.W. Wang, Q.Z. Xing, et al., Beam dynamics design and experiments of CPHS linac. Proceedings of HB2014. THO2LR02.

[67] Q.Z. Xing, et al., Present status of the high current proton linac at Tsinghua University and its beam measurements and applications. Proceedings of HB2014. TUO3AB01.

[68] L. Du, Q.Z. Xing, et al., The design, construction and experiments of a RFQ cold model at Tsinghua University. Proceedings of IPAC14. THPRO095.

[69] L. Du, Q.Z. Xing, et al., Large scale particle tracking and the application in the simulation of the RFQ. Proceedings of IPAC14. THPRO094.

[70] J. Zeng, Q.Z. Xing, et al., Cooling design for the FRIB RFQ cavity at Michigan State University. Proceedings of IPAC14. THPME024.

[71] Q.Z. Xing, et al., CPHS Linac status at Tsinghua University. Proceedings of IPAC14. THPME023.

[72] L. Du, Q.Z. Xing, S.X. Zheng, X.L. Guan, et al., A fast tuning method for a RFQ accelerator with ramped inter-vane voltage. Nucl. Instr. and Meth. A 726 91~95(2013).

[73] L. Du, X.L. Guan, C.X. Tang, Q.Z. Xing, Preliminary beam dynamics and structure design of one 50mA/CW RFQ with ramped inter-vane voltage. Proceedings of IPAC13. THPWO049.

[74] Q.Z. Xing, C. Cheng, L. Du, Q. Du, et al., High power test and beam commissioning of the CPHS RFQ accelerator. Proceedings of IPAC13. THPWO050.

[75] Q.Z. Xing, L. Du, S.X. Zheng, X.L. Guan, et al., Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source. CHIN. PHYS. LETT. Vol.30, No.5 (2013)052901

[76] Q.Z. Xing, X.L. Guan, C. Jiang, C.X. Tang, et al., Beam dynamics of the 13 MeV/50 mA proton linac for the Compact Pulsed Hadron Source at Tsinghua University. Proceedings of HB2012 conference. TUO3B05.

[77] 邢庆子,杜磊,关遐令,郑曙昕,等. 四翼型变电压RFQ加速器的调谐与冷测. 第六届全国加速器微波、高频技术研讨会论文. 2012.

[78] L. Du , Q.Z. Xing, X.L. Guan, J.C. Cai. Design of a four-vane 325 MHz RFQ cold model at Tsinghua University. Proceedings of IPAC12. THPPC015.

[79] Q.Z. Xing, J.C. Cai, C. Cheng, L. Du, et al., Commissioning status of the 3 MeV RFQ for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. Proceedings of IPAC12. THPPC014.

[80] Q.Z. Xing, Y.J. Bai, J. billen, J.C. Cai, et al., A 3-MeV RFQ accelerator for the Compact Pulsed Hadron Source at Tsinghua University. Physics Procedia, 26(2012): 36~43

[81] J.C. Cai, Q.Z. Xing, X.L. Guan, L. Du. Design of the undercuts and dipole stabilizer rods for the CPHS RFQ accelerator. Chinese Physics C, 2012, 36(5): 464~468

[82] Q.Z. Xing, L. Du, Y.J. Bai, J.C. Cai, et al., Construction status of the CPHS RFQ at Tsinghua University. Proceedings of IPAC11. MOPC024.

[83] Q.Z. Xing, X.L. Xu, C. Feng, C.X. Tang. Spontaneous emission high-gain harmonic generation free-electron laser. Nucl. Instr. and Meth. A 637 S177~S182(2011).

[84] 邢庆子,梁涛涛,吕进,童德春. 遗传算法在9-cell超导模型腔腔链诊断中的应用探索. 第五届全国加速器微波、高频技术研讨会论文. 2010.

[85] Q.Z. Xing, J.C. Cai, Y.J. Bai, X.L. Guan, et al., Development of the 3MeV RFQ for the compact pulsed hadron source at Tsinghua University. Proceedings of LINAC10. TUP046.

[86] Q.Z. Xing, D.C. Tong, T.T. Liang, J. Lv. Investigation of the Genetic Algorithm in the Diagnosis of the Coupled Cavity Chain. Proceedings of IPAC10. THPEA026.

[87] Q.Z. Xing, J.C. Cai, Y.J. Bai, C. Cheng, et al., Design of the CPHS RFQ Linac at Tsinghua University. Proceedings of IPAC10. MOPD047.

[88] X.L. Xu, Q.Z. Xing, C.X. Tang. Design of FEL by the EEHG Scheme at Tsinghua University. Proceedings of IPAC10. TUPE034.

[89] Q.F. Li, Q.Z. Xing, C.C. Kong. Physical analysis of the radiation shielding for the medical accelerators. Journal of Applied Physics, 2009, 105:034911

[90] Q.Z. Xing, J. Wu, S.X. Zheng, C.X. Tang. Mode analysis of high-power microwave generation in the inward-emitting coaxial Vircator based on computer simulation. IEEE Trans. Plasma Sci., 2009, 37(2): 298~303

[91] 邢庆子,吴坚,童德春,唐传祥. 1.3 GHz ICHIRO 9-cell超导腔的高阶模测量. 第四届全国加速器微波、高频技术研讨会. 2008.

[92] J. Wu, Q.Z. Xing, J.R. Shi, S.X. Zheng, et al., Field tuning and HOMs measurement of the 9-cell ICHIRO copper cavity model. 13th International Workshop on RF Superconductivity, Beijing, 2007

[93] 李泉凤,邢庆子. 《电磁铁课程设计》教学实践中的科研成果转化. 清华大学科研成果转化为教学资源典型案例汇编,清华大学出版社,2007.

[94] 王冬,邢庆子,黄峰,邓景康. 渐变型磁绝缘线振荡器色散关系的研究. 强激光与粒子束,2006, 18(4):623~626

[95] 黄峰,邢庆子,王冬,邓景康. 相对论返波管慢波结构的优化设计和数值模拟. 清华大学学报(自然科学版),2006, 46(3):399~402

[96] 邢庆子,王冬,黄峰,郑曙昕,等. 向内发射同轴虚阴极振荡器理论分析与数值模拟. 强激光与粒子束,2006, 18(5):853~858

[97] 邢庆子,王冬,黄峰,邓景康. 向内发射同轴虚阴极振荡器的优化. 清华大学学报(自然科学版),2006, 46(12):2024~2027

[98] Q.Z. Xing, D. Wang, X.Z. He, S.X. Zheng, et al., Numerical simulation study on the interaction of the beam and cavity modes in an inward-emitting coaxial virtual cathode oscillator. High Energy Physics & Nuclear Physics, 2006, 30(6): 571~576

[99] Q.Z. Xing, D. Wang, F. Huang, J.K. Deng. Two-dimensional theoretical analysis of the dominant frequency in the inward-emitting coaxial vircator. IEEE Trans. Plasma Sci., 2006, 34(3): 584~589

[100] Q.Z. Xing, S.N. Fu, Y.Z. Lin, S.X. Fang. The longitudinal “trapping” phenomenon in the simultaneous acceleration of intense H+ and H- in an RFQ. Nucl. Instr. and Meth. A 538 143~153(2005).

[101] 邢庆子,林郁正,傅世年. PIC方法在RFQ加速器z-code和t-code模拟程序中的应用研究. 核技术,2005,28(5):342~348

[102] 邢庆子,林郁正,傅世年,方守贤. 利用模拟方法研究RFQ加速器中正、负离子束同时加速的动力学问题. 高能物理与核物理,2004,28(6):659~663

[103] 邢庆子,傅世年,林郁正,方守贤. RFQ加速器束流接受度的计算. 高能物理与核物理,2003,27(7):628~632

[104] 邢庆子,林郁正,傅世年,方守贤. RFQ加速器中正负束同时加速的动力学模拟初步研究. 第八届全国加速器物理学术交流会论文集. 2002.

[105] S. Wei, Q. Z. Xing, Y.Z. Lin. Analysis of single-passband dispersion curves in periodical accelerating structures. High Energy Physics & Nuclear Physics, 2002, 26(2): 180~185 (in Chinese)



2023年—2028年,强脉冲辐射环境模拟与效应全国重点实验室客座研究员

2019年—至今,中国生物医学工程学会精确放疗技术分会粒子束放射治疗技术学组委员

2017年—至今,《原子能科学技术》期刊编委


  • 地址:清华大学工程物理系(刘卿楼)
  • 邮编:100084
  • 电话:010-62785727
  • 邮箱:gwbgs@mail.tsinghua.edu.cn
Copyright © 2020 清华大学工程物理系 All Right Reserved