博士生导师
当前位置:师资队伍 > 博士生导师
高 喆
教 授

教授,博士生导师

邮 箱:gaozhe@tsinghua.edu.cn

  • 教育背景
  • 工作经历
  • 教学工作
  • 研究领域
  • 研究概况
  • 学术成果
  • 学术兼职
  • 奖励与荣誉

● 工学博士,核科学与技术,清华大学,2002

● 工学学士,工程物理,清华大学,1997

  ● 2011.12-至今 清华大学工程物理系教授、博士生导师

  ● 2004.12-2011.11 清华大学工程物理系副研究员(2008年起担任博士生导师)

  ● 2002.07-2004.11 清华大学工程物理系助理研究员

其中:

  ● 2010.04-2010.07 法国南锡一大、德国于利希中心,访问科学家

  ● 2009.01-今 中国科学院磁约束聚变理论中心,研究员、副主任

  ● 2007.07-2007.10 日本国家核融合研究所,文部省客员副教授

  ● 2006.04-2006.07 美国普林斯顿大学PPPL,访问学者

  ● 2004.04-2004.07 日本国家核融合研究所文部省客员副教授

主讲或合讲课程:

  ● 等离子体物理基础(本科生,秋季学期)

  ● 瓶装太阳-人类的聚变梦想(本科生新生研讨课,秋季学期)

  ● 聚变能源概论 (本科生,春季学期)

  ● 等离子体物理导论(研究生,秋季学期)

  ● 高温等离子体物理(研究生,春季学期)

  ● 气体和等离子体动理力论(研究生,秋季学期)

研究生培养情况:

  ● 目前指导 14 名博士生,1名硕士生

    ★ 刘志远、仲珩、骆宇航、刘文斌、王彬彬、王首智、程争波、苏鹏娟、杨萌华、魏云逍;

    ★ 清华与中核联合培养:王浩西、白雪、晏庆豪、杨宗谕、梁健伟。

  ● 已毕业博士 16 名,硕士5人,包括:

    ★ 王 英, 07年7月获硕士学位,论文题目:任意环径比、非圆截面、轴对称等离子体中温度梯度模的数值研究;

    ★ 彭黎黎, 08年7月获硕士学位, 论文题目:强变形等离子体中电子温度梯度模的数值研究;

    ★ 王平, 09年7月获硕士学位, 论文题目:等离子体截面形状和有限环径比对托卡马克中测地声模的影响;

    ★ 赵鸥, 09年10月毕业获得工程硕士学位,论文题目:SUNIST垂直场电源控制系统改造;

    ★ 郭星宇, 17年7月毕业获得工学硕士学位,论文题目:电子回旋波的模转换研究;

    ★ 谭熠, 09年1月获博士学位, 论文题目:SUNIST球形托卡马克上非感应电流启动与维持实验研究;

    ★ 张良, 09年7月获博士学位, 论文题目:SUNIST单粒子模拟系统开发及应用研究;

    ★ 白兴宇, 09年7月获博士学位,论文题目:HL-2M低杂波新天线设计和计算(与核工业西南物理研究院联合培养,合作导师:饶军研究员);

    ★ 黄永盛, 09年7月获博士学位,论文题目:超短超强激光与固体靶相互作用加速离子的机制研究(与中国原子能科学研究院联合培养,合作导师:王乃彦院士);

    ★ 曾龙, 10年7月获博士学位,论文题目:SUNIST球形托卡马克平衡位形反演与不稳定性研究;

    ★ 何志雄, 11年1月获得博士学位,论文题目:反常电子粘滞性引起的双撕裂模研究(与核工业西南物理研究院联合培养,合作导师:董家齐研究员);

    ★ 贾国章, 12年7月获得博士学位,论文题目:流动电子和有限电子温度效应对电子回旋频段O-X-B转换的影响(中国科学院大学);

    ★ 赵爱慧, 13年1月获得博士学位,论文题目:低杂波作用下等离子体中的参量不稳定性研究;

    ★ 陈佳乐, 13年1月获得博士学位,论文题目:磁化等离子体中射频波非线性作用力的动理学研究 (中国科学院大学);

    ★ 侍行剑, 13年1月获得博士学位,论文题目:低杂波电流驱动效率优化的模拟研究及射线追踪-全波混合方法模拟程序发展(中国科学院大学);

    ★ 李明, 15年7月获得博士学位,论文题目:HL-2A中性束注入系统射频离子源研究;

    ★ 刘阳青, 15年7月获得博士学位,论文题目:SUNIST等离子体小破裂过程磁流体力学行为研究;

    ★ 柴忪, 17年1月获得博士学位,论文题目:球形托卡马克中湍流的能量传 递和非线性相互作用研究;

    ★ 姜艳铮, 17年7月获得博士学位,论文题目:真空室涡流分析方法及涡流对平衡反演的影响;

    ★ 柯锐, 18年7月获得博士学位,论文题目:HL-2A 边缘湍流能量传递研究及 束发射谱诊断的发展;

    ★ 李杨, 18年7月获得博士学位,论文题目:托卡马克等离子体中平行动量 湍流输运研究

   等离子体物理和磁约束核聚变相关研究,尤其是微观不稳定性、湍流输运与湍流自组织结构、射频波-等离子体相互作用(波加热、电流驱动与流驱动)、球形托卡马克物理。

负责基金委、科技部、教育部多项科研项目,包括

  ● 19.01-22.12 国家重大科研仪器研制项目:球形环等离子体融合压缩平台的研制和建设

  ● 19.01-21.12国家自然科学基金委面上项目:球形托卡马克电子伯恩斯坦波模式转换实验研究

  ● 14.01-17.12 国家杰出青年基金项目:磁约束等离子体中波与不稳定性若干问题研究

  ● 13.04-17.07 国家磁约束聚变能发展研究专项(ITER计划专项国内研究项目):磁约束聚变物理前沿问题研究--波与等离子体相互作用理论研究及实验探索

  ● 12.08-17.07 国家自然科学基金委中日韩A3前瞻项目:球形环中托卡马克等离子体电流启动与电流驱动的创新研究

  ● 12.01-15.12 国家自然科学基金委面上项目:SUNIST中阿尔芬波的激励及其对MHD行为的影响

  ● 12.07-15.06 国际原子能机构IAEA小装置联合研究:Plasma startup by rf waves in Spherical Tokamak

  ● 10.01-13.12 国家自然科学基金重大项目之重点课题:射频波触发高约束模的理论和模拟研究(清华课题组负责人)

  ● 08.04-12.08 科技部973课题:球形(小环径比)托卡马克等离子体电流启动及基本特性的研究

  ● 09.08-12.07 科技部ITER国内配套项目课题:射频波与聚变等离子体相互作用研究(清华课题组负责人)

  ● 06.01-09.12 国家自然科学基金重点项目:球形环等离子体电流非感应建立及维持的研究

  ● 05.01-09.12 教育部优秀博士学位论文作者专项基金:环形等离子体中阿尔芬特征模与阿尔芬波电流驱动的理论与实验研究.

  ● 05.01-08.12 国际原子能机构IAEA小装置联合研究:ECR plasma current startup with/without electrode discharge assistance.

  ● 05.01-07.12 国家自然科学基金青年科学基金:任意环径比、非圆截面、轴对称等离子体中的多尺度微观不稳定性与扩散损失研究。

  [1] Zhong, H., Ling, B. L., Wang, S. Z., Wang, B. B., Tan, Y., Gao, Z., Design and implementation of an interferometer with high stability and wide dynamic range for steady-state plasmas, FUSION ENGINEERING AND DESIGN 128, 143-148 (2018)

  [2] Zhong, H., Tan, Y., Gao, Z., Note: Development of a multichannel magnetic probe array for magnetohydrodynamic activity studies in Sino-United Spherical Tokamak, REVIEW OF SCIENTIFIC INSTRUMENTS 89, 0026101 (2018)

  [3] Aihui Zhao, Zhe Gao, Isotopic effect of parametric instabilities during lower hybrid waves injection intohydrogen/deuterium plasmas, PHYSICS OF PLASMAS 24, 014504 (2017)

  [4] Guozhang Jia, Zhe Gao,The effects of oblique incidences on the XB mode conversion in the electron cyclotron range of frequency, PHYSICS OF PLASMAS 24, 022506 (2017)

  [5] Chai, Song,Xu, Yu-Hong,Gao, Zhe,Wang, Wen-Hao,Liu, Yang-Qing,Tan, Yi, Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the sino-united spherical tokamak, sino-united spherical tokamak, CHINESE PHYSICS LETTERS 34, 2025201 (2017).

  [6] Song Chai,Yuhong Xu,Zhe Gao,Yi Tan,Wenhao Wang, Experimental measurements of energy transfer and nonlinear interaction in turbulence at the sino-united spherical tokamak, PHYSICS OF PLASMAS 24, 032503 (2017)

  [7] Guo, Xingyu, Gao, Zhe,Jia, Guozhang, One-dimensional ordinary-slow extraordinary-Bernstein mode conversion in the electron cyclotron range of frequencies, PLASMA SCIENCE & TECHNOLOGY 19, 085101 (2017)

  [8] Jiang, Y. Z.,Tan, Y.,Gao, Z.,Nakamura, K.,Liu, W. B.,Wang, S. Z.,Zhong, H.,Wang, B. B., Determination of eddy current response with magnetic measurements, REVIEW OF SCIENTIFIC INSTRUMENTS 88, 093510 (2017)

  [9] Wang, H. X.,Zhou, Y.,Li, Y.,Li, Y. G.,Yi, J.,Deng, Z. C.,Gao, Z.,Wu, T. Y.,Yin, Z. J.,Akiyama, T.,A new dispersion interferometer on HL-2A, REVIEW OF SCIENTIFIC INSTRUMENTS 88, 103502 (2017)

  [10] Bai, Xue,Liu, Yueqiang,Gao, Zhe,Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field,PHYSICS OF PLASMAS 24, 102505 (2017)

  [11] Z. Gao, Compact magnetic confinement fusion: spherical torus and compact torus, Matter and Radiation at Extremes 1, 153-162 (2016)

  [12] Li, Y., Z. Gao and J. Chen, Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence, Physics of Plasmas 23, 082512 (2016)

  [13] Zhong H., Ling B. L., Tan Y. and Gao Z. Assessment of the beam path deflection for a vertically installed microwave interferometer in SUNIST, Review of Scientific Instruments, 87, 083501 (2016)

  [14] Zhong H., Tan Y., Liu Y. Q., Xie H. Q. and Gao Z, A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak, Review of Scientific Instruments, 87, 11E109 (2016)

  [15] Wenbin Liu, Yi Tan, Wenhao Wang, and Zhe Gao, An ultrafast reciprocating probe, Review of Scientific Instruments. 87, 11D437 (2016)

  [16] Yangqing Liu, Yi Tan, Zhe Gao, et al, Observation of toroidal Alfvén eigenmodes during minor disruptions in ohmic plasmas, Phys. Plasmas 23, 120706 (2016)

  [17] X. Gao, Y-C.Ghim, Y.W. Sun, Z. Gao, et al,APTWG: The 5th Asia-Paciἀc Transport Working Group Meeting, Nucl. Fusion 56, 037001 (2016)

  [18] Yi Tan, Guixiang Yang, Huiqiao Xie, Yangqing Liu, Rui Ke, Yanzheng Jiang, Song Chai,Wenhao Wang, Zhe Gao, An ohmic field power supply based on a modified IGBT H-bridge for Sino-UNIted Spherical Tokamak, Fusion Engineering and Design 98–99, 1163–1168 (2015)

  [19] Jiale Chen and Zhe Gao, Tokamak plasma flows induced by local rf force, Plasma Science and Technology 17, 809 (2015)

  [20] Yangqing Liu, Yi Tan, Rui Ke, Hao Yang, Wenhao Wang and Zhe Gao, Compact, battery powered, wireless digitizers for in situ data acquisitions in the sino-united spherical tokamak, Review of scientific instruments 86(7):073504 (2015).

  [21] Y. L. Li, G. S. Xu, H. Q. Wang, C. Xiao, B. N. Wan, Z. Gao, R. Chen, L. Wang, K. F. Gan, J. H. Yang, X. J. Zhang, S. C. Liu, M. H. Li, S. Ding, N. Yan, W. Zhang, G. H. Hu, Y. L. Liu, L. M. Shao, J. Li, L. Chen, N. Zhao, J. C. Xu, Q. Q. Yang, H. Lan, and Y. Ye Fast electron flux driven by lower hybrid wave in the scrape-off layer, Physics of Plasmas 22, 022510 (2015)

  [22] Yang Li and Zhe Gao, Comparison of collision operators for the geodesic acoustic mode, Nuclear Fusion 55, 043001 (2015).

  [23] Guo-Zhang Jia and Zhe Gao, One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies, Physics of Plasmas 21, 122121 (2014).

  [24] Gao Z. Radio-frequency current drive and flow drive in magnetic confinement fusion plasma (in Chinese). Chin Sci Bull. 59: 3120–3129 (2014)

  [25] J. Chen and Z. Gao, Local nonlinear rf forces in inhomogeneous magnetized plasmas, Physics of Plasmas 21, 062506 (2014)

  [26] Yangqing Liu, Yi Tan, Huiqiao Xie, Wenhao Wang, and Zhe Gao, Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform, Review of Scientific Instruments 85, 073502 (2014).

  [27] Yangqing Liu, Yi Tan, Ou Pan, Rui Ke, Wenhao Wang, and Zhe Gao, Design and calibration of high-frequency magnetic probes for the SUNIST spherical tokamak, Review of Scientific Instruments 85, 11E802 (2014).

  [28] Song Chai, Wenhao Wang, Yi Tan, and Zhe Gao, Movable multi-probes for plasma boundary measurement in sino-united spherical tokamak, Review of Scientific Instruments 85, 11D804 (2014).

  [29]Y. Z. Jiang, Y. Tan, Z. Gao, and L. Wang, Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak, Review of Scientific Instruments 85, 11E815 (2014).

  [30] H. Q. Xie, Y. Tan, R. Ke, W. H. Wang, Z. Gao, Analysis of the Gas Puffing Performance for Improving the Repeatability of Ohmic Discharges in the SUNIST Spherical Tokamak, Plasma Science and Technology, 16, 732 (2014)

  [31] H. Q. Xie, Y. Tan, Y. Q. Liu, W. H. Wang, Z. Gao, A collisional-radiative model for the helium plasma in the Sino-United Spherical Tokamak and its application to the line intensity ratio diagnostic, Acta Phys. Sin. 63,125203 (2014)

  [32] Z. Gao, J. Chen and N. J. Fisch, Parallel rf Force Driven by the Inhomogeneity of Power Absorption in Magnetized Plasma, Physical Review Letters 110, 235004 (2013)

  [33] A. Zhao and Z. Gao, Convective amplification of a three-wave parametric instability in inhomogeneous plasma, Physics of Plasmas 20,114503 (2013)

  [34] G. Z. Jia, Z. Gao and A. Zhao, Effects of electron temperature and electron flow on O-X conversion, Physics of Plasmas 20,102509 (2013)

  [35] J. Chen and Z. Gao, Second-order radio frequency kinetic theory revisited: Resolving inconsistency with conventional fluid theory, Physics of Plasmas 20, 082508 (2013)

  [36] A. Zhao and Z. Gao, Parameter study of parametric instabilities during lower hybrid wave injection into tokamaks, Nuclear Fusion 53, 083015 (2013)

  [37] Z. Gao, Collisional damping of the geodesic acoustic mode, Physics of Plasmas 20, 032501 (2013)

  [38] X. J. Shi, Y. M. Hu and Z. Gao, Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio, Plasma Science and Technology 14, 215(2012)

  [39] G.-Z. Jia and Z. Gao, Effect of electron flow on the ordinary-extraordinary mode conversion, Physics of Plasmas 18, 104511 (2011)

  [40] Z. Gao, N. J. Fisch, and H. Qin, Radial electric field generated by resonant trapped electron pinch with radio frequency injection in a tokamak plasma, Physics of Plasmas 18, 082507 (2011)

  [41] Y. Tan, Z. Gao, L. Wang, W.H.Wang, L.F Xie, X.Z. Yang and C.H. Feng, Transient process of a spherical tokamak plasma startup by electron cyclotron waves, Nuclear Fusion 51, 063021(2011)

  [42] L. Zeng, Z Gao, Y. Tan, W. H. Wang, H. Q. Xie, L. F. Xie, C. H. Feng, J. Liu, L. Wang, X. Z Yang, Y. B. Wu, F. C. Zhong and X. Gao, Investigation of some MHD events in the SUNIST Spherical Tokamak, Plasma Science and Technology 13, 420 (2011)

  [43] He Zhixiong,Dong Jiaqi,He Hongda,Long Yongxing,Mou Zongze,Liu Feng,Jiang Haibin,and Gao Zhe, Linear behavior of double tearing mode mediated by parallel electron viscosity, Nuclear Fusion and Plasma Physics 31(1), 8-14 (2011) in Chinese

  [44] Jiang Yanzheng, Zhong Fangchuan, Wu Yanbin,Tan Yi, Zeng Long and Gao Zhe, External n=1 magnetic field system on SUNIST spherical tokamak, Nuclear Fusion and Plasma Physics 31(1), 75-80 (2011) in Chinese

  [45] Z. X. He, J. Q. Dong, H. D. He, H. B. Jiang, Z. Gao, and J. H. Zhang, MHD equilibrium configuration reconstructions for the HL-2A tokamak, Plasma Science and Technology 13, 424 (2011)

  [46] Z. Gao, Analytical theory of the geodesic acoustic mode in the small and large orbit drift width limits and its application in a study of plasma shaping effect, Plasma Science and Technology 13, 15 (2011)

  [47] Y. Tan, Z. Gao and L. Wang, Simulation of ECR startup and comparison with experimental observations in SUNIST, Plasma Science and Technology 13, 30 (2011)

  [48] Z. Gao, Plasma shaping effects on the geodesic acoustic mode in the large orbit drift width limit, Phys. Plasmas 17, 092503 (2010)

  [49] Z. X. He, J. Q. Dong, Y. X. Long, Z. Z. Mou, Z. Gao, H. D. He, F. Liu, and Y. Shen, Double tearing mode induced by parallel electron viscosity in tokamak plasmas, Physics of Plasmas 17, 112102 (2010)

  [50] Z. X. He, J. Q. Dong, H. D. He, Y. X. Long, Z. Z. Mou and Z. Gao, Synergy of plasma resistivity and electron viscosity in mediating double tearing modes in cylindrical plasmas, Physica Script 82, 065507 (2010)

  [51] Y. S. Huang, N. Y. Wang, Y. J. Shi, X. Z. Tang, Y. J. Bi, and Z. Gao, Energetic laser-ion acceleration by strong charge-separation field, Plasma Science and Technology 12, 268 (2010)

  [52] L. Zhang, L. Zeng, Y. Tan, L. F. Xie, Z. Gao, W. H. Wang, Measurement of outgassing rate of magnetic probe in the SUNIST spherical tokamak, Nuclear Fusion and Plasma Physics 30, 277 (2010) in chinese

  [53] Y. Tan, Z. Gao and Y. X. He, Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak, Fusion Eng. Design 84, 2064 (2009)

  [54] Y. S. Huang, Y. J. Shi, Y. J. Bi, X. J. Duan, N. Y. Wang, X. Z. Tang and Z. Gao, Analytical expressions of the front shape of non-quasi-neutral plasma expansions with anisotropic electron pressures, Phys. Rev. E. 80, 056403 (2009)

  [55] Y. Tan, Y. X. He, L. F. Xie, Z. Gao and W. H. Wang, ECW assited ohmic start-up experiments on the SUNIST spherical tokamak, Nuclear Fusion and Plasma Physics 29, 121 (2009) in chinese

  [56] X. Q. Xu, E. Belli, K. Bodi, J. Candy, C.S. Chang, R.H. Cohen, P. Colella, A.M. Dimits, M.R. Dorr, Z. Gao, J.A. Hittinger, S. Ko, S. Krasheninnikov, G.R. McKee, W.M. Nevins, T.D. Rognlien, P.B. Snyder, J. Suh and M.V. Umansky, Dynamics of kinetic geodesic-acoustic modes and the radial electric field in tokamak neoclassical plasmas, Nuclear Fusion 49, 065023 (2009).

  [57] Z. Gao, L. L. Peng, P. Wang, J. Q. Dong and H. Sanuki, Plasma Elongation Effects on Temperature Gradient Driven Instabilities and Geodesic Acoustic Modes, Nuclear Fusion 49, 045014 (2009).

  [58] L. Zeng, Z. Gao and Y. X. He, Control of the Vertical Instability in the SUNIST Spherical Tokamak, Plasma Sci. Tech. 11, 265(2009)

  [59] Y. S. Huang, Y. J. Bi, Y. J. Shi, N. Y. Wang, X. Z. Tang and Z. Gao, Time-dependent energetic proton acceleration and scaling laws in ultraintense laser-pulse interactions with thin foils, Phys. Rev. E. 79, 036406 (2009)

  [60] S. F. Liu, W. Kong, B. L. Hu, F. Liu, J. Q. Dong and Z. Gao, Ion temperature gradient driven instability in high beta plasmas of a sheared slab, Phys. Plasmas 16, 012302 (2009)

  [61] L. L. Peng and Z. Gao, Effect of elongation on critical gradient for toroidal electron gradient modes, Chin. Phys. Lett. 25, 4065 (2008)

  [62] L. Zeng, Y. X. He, Z. Gao, et al, Design of magnetic Measurement system on SUNIST Spherical Tokamak, Plasma Science and Technology 10, 535 (2008)

  [63] Z. Gao, P. Wang and H. Sanuki, Plasma shaping effects on the geodesic acoustic mode in toroidally axisymmetric plasmas, Phys. Plasmas 15, 074502 (2008)

  [64] Z. Gao, K. Itoh, H. Sanuki, and J. Q. Dong, Eigenmode analysis of geodesic acoustic modes, Phys. Plasmas 15, 072511 (2008).

  [65] X. Q. Xu, Z. Xiong, Z. Gao, W. M Nevins, and G. R. Mckee, TEMPEST simulations of collisionless damping of geodesic-acoustic mode in edge plasma pedestal, Phys. Rev. Lett. 100, 215001 (2008).

  [66] Y. Wang and Z. Gao, Effects of finite aspect ratio and noncircular plasma flux surface on electron temperature gradient driven modes, Plasma Science and Technology 10, 151 (2008).

  [67] Z. Gao, N. J. Fisch, H. Qin and J. R. Myra, Nonlinear nonresonant forces by radio-frequency waves in plasmas, Physics of Plasmas 14, 084502 (2007).

  [68] Z. Gao, N. J. Fisch and H. Qin, Nonlinear ponderomotive force by low frequency waves and nonresonant current drive, Physics of Plasmas 13, 112307 (2006).

  [69] Z. Gao, K. Itoh, H. Sanuki, and J. Q. Dong, Multiple eigenmodes of geodesic acoustic mode in collisionless plasma, Physics of Plasmas 13, 100702 (2006).

  [70] Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, Critical gradients of short wavelength ion temperature gradient instabilities, Journal of Plasmas Physics 72, 1249 (2006).

  [71] H. Sanuki, Z. Gao and J. Q. Dong, Nonlocal stability analysis of microinstabilities in inhomogeneous plasmas, Journal of the Korean Physical Society 49, S418 (2006).

  [72] Y. Wang and Z. Gao, Short wavelength ion temperature gradient driven instability in noncircular flux surface plasmas with finite aspect ratio, Chinese Physics Letters 23, 2151 (2006).

  [73] Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, Short wavelength ion temperature gradient instability in toroidal plasmas, Physics of Plasmas 12, 022502 (2005).

  [74] Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, Short wavelength electron temperature gradient instability in toroidal plasmas, Physics of Plasmas 12, 022503 (2005).

  [75] Y. He, Z. Gao, W. H. Wang, Q. Xiao, L. F. Xie, L. Zeng, G. P. Zhang, C. H. Feng, L. Wang, Y. Z. Yang, SUNIST Program and Improvement of Operation on SUNIST Spherical Tokamak, IEEJ transactions on Fundamentals and Materials 125-A, 925 (2005).

  [76] Y. He, X. Y. Li, and Z. Gao, Coupling effect between the equilibrium and heating fields and modification of the power supply system on SUNIST spherical tokamak, Plasma Science and Technology 7, 2623(2005).

  [77] F. Liu, J. Q. Dong, and Z. Gao, Electron temperature gradient driven instability in high beta plasmas of a sheared slab, Chinese Physics Letters 22, 1170 (2005).

  [78] W. H. Wang, Y. He, Z. Gao, L. Zeng, G. P. Zhang, L. F. Xie, , Y. Z. Yang, C. H. Feng, L. Wang, Q. Xiao, and X. Y. Li, Edge plasma electrostatic fluctuation and anomalous transport characteristics in the Sino-united Spherical Tokamak (SUNIST), Plasma Physics and Controlled Fusion 47, 1 (2005).

  [79] W. H. Wang, Y. X. He, Z Gao, L. Zeng, G. P. Zhang, L. F. Xie, Q. Xiao, Y. Z. Yang, C. H. Feng, L. Wang, Experimental Observation of the Toroidal Flow Shear in the Edge of the SUNIST, IEEJ transactions on Fundamentals and Materials 125-A, 929 (2005).

  [80] Z. T. Wang, G. P. Mao, Q. W. Yang, J. H. Zhang, Z. Gao and Y. He, Identification of Plasma Boundary and Position for HL-2A Tokamak, Plasma Science and Technology 7, 2905 (2005).

  [81] Z. Gao, J. Q. Dong, H. Sanuki and K. Itoh, Effects of flow shear on the temperature gradient driven short wavelength modes, Physics of Plasmas 11, 3053 (2004).

  [82] Z. Gao, A new kinetic mode driven by electron temperature gradient, Chinese Physics Letters 21, 881 (2004).

  [83] W. H. Wang, Y. X. He, Z. Gao, L. Zeng, G. P. Zhang, L. F. Xie and C. H. Feng, Observation of intermittency in edge plasma of SUNIST plasma, Chinese Physics 13, 2091 (2004).

  [84] W. H. Wang, Y. He, Z. Gao L. Zeng, G. P. Zhang, L. F. Xie and C. H. Feng, Edge plasma electrostatic fluctuation characteristics in the Sino-united Spherical Tokamak, Chinese Physics Letter 21, 1578 (2004).

  [85] G. P Zhang, Y. X. He, W. H. Wang, Z. Gao, L. Zeng, L. F. Xie and C. H. Feng Observation of radial propagation of electrostatic fluctuation in edge plasma of the Sino United Spherical Tokamak, Chinese Physics Letter 21, 2469(2004).

  [86] Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, Temperature gradient driven short wavelength modes in sheared slab plasmas, Physics of Plasmas 10, 2831 (2003).

  [87] Z. Gao, J. Q. Dong, G. J. Liu, and C. T. Ying. Effects of flow shear on the ion temperature gradient modes in a high β plasma slab, Physics of Plasmas 10, 774 (2003).

  [88] Z. Gao, J. Q. Dong, G. J. Liu, and C. T. Ying. Electromagnetic ion temperature gradient modes of tearing mode parity in high β sheared slab plasmas, Physics of Plasmas 9, 1692 (2002).

  [89] Z. Gao, J. Q. Dong, G. J. Liu, and C. T. Ying. Analysis of ion temperature gradient modes in high β plasmas with sheared slab configuration model, Physics of Plasmas 9,569 (2002).

  [90] Z. Gao, J. Q. Dong, G. J. Liu, and C. T. Ying. Study of electromagnetic instabilities driven by ion temperature gradient and parallel sheared flows in high β plasmas, Physics of Plasmas 8, 4080 (2001).

  [91] Z. Gao, J. Q. Dong, G. J. Liu, and C. T. Ying. Effects of β and Te/Ti on the ion temperature gradient modes in anisothermal plasmas, Physics of Plasmas 8, 2816 (2001).

● Plasma Science and Technology编委

● Matter and Radiation at Extreme 编委

● 中国核学会核聚变与等离子体物理分会常务理事

● 中国物理学会等离子体物理分会理事

● 蔡诗东等离子体物理奖奖励委员会委员

● 中国等离子体暑期学校组织委员会委员

● 球形环国际研讨会(ISTW)国际程序委员会委员

● 国家高层次人才特殊支持计划(万人计划)领军人才(16年)

● 创新人才推进计划中青年科技创新领军人才(15年)

● 国家杰出青年基金获得者(13年)

● 教育部霍英东基金会青年教师奖(12年)

● 清华大学学术新人奖(11年)

● 清华大学221基础研究人才支持计划(11年)

● 北京市科技新星计划(08年)

● 教育部新世纪人才支持计划(08年)

● 全国优秀博士学位论文奖(04年)

● 蔡诗东等离子体物理奖(03年)

● 清华大学优秀毕业生暨清华大学优秀博士学位论文奖(一等) (02年)

  • 地址:清华大学工程物理系(刘卿楼)
  • 邮编:100084
  • 电话:010-62785727
  • 邮箱:gwbgs@mail.tsinghua.edu.cn
Copyright © 2020 清华大学工程物理系 All Right Reserved