中级
当前位置:师资队伍 > 教师队伍
续本达
助理教授

助理教授,现任近物所纪律检查委员

电子邮箱:orv[AT]tsinghua[DOT]edu[DOT]cn

主页:http://hep.tsinghua.edu.cn/~orv/

  • 教育背景
  • 工作经历
  • 教学工作
  • 研究领域
  • 研究概况
  • 学术成果
  • 学术兼职

● 2011.10-2014.09 日本东北大学 理学部中微子研究中心  物理学博士

● 2009.10-2011.09 日本东北大学 理学部中微子研究中心  物理学硕士

● 2005.08-2009.07 清华大学 物理系 数学物理基科学学士

● 2018.08-现在 清华大学工程物理系 助理教授

● 2015.04-2018.08 东京大学数物连携宇宙研究所 (IPMU)  特任研究员 (博士后)

● 2014.10-2015.02 日本东北大学 理学部中微子科学研究中心 教育研究支援者 (博士后)

● 讲授《实验物理的大数据方法(1)》、《实验物理的大数据方法(2)》本科生课程;合教《基础物理学(1)》、《基础物理学(3)》、《高能物理导论》本科生课程;合教《高能物理实验专题》研究生课程。

● 指导1名学生完成本科生毕业设计,1名博士研究生在读;

● 指导学生科技赛事“Ghost-Hunter 中微子数据分析排位赛”;

● 指导SRT项目 《研究开发粒子物理计算网格》;

● 指导学生科技项目《Entropy:基于IPv6前缀转换的多出口负载均衡自组织互联网络》,获得清华大学第三十七届“挑战杯”课外学术科技作品竞赛,获得校级二等奖。

● 作为一名实验物理学者,续本达教授正在围绕中国锦屏地下实验室的中微子实验开展研究工作。他同时参与 JUNO、SK、XMASS 等国际合作研究。这些实验都(将)位于地下实验室,地下环境为观测中微子和暗物质提供了天然宇宙线屏蔽,是观测弱信号的基本条件。这些微弱信号中蕴含着物理学的前沿,包括潜在的平时被忽略的新粒子和新型相互作用。

● 近一个世纪,人类对地球、太阳系、星系、宇宙起源的认识获得了颠覆性的突破。中微子极小的质量、极小的反应截面和在宇宙中的普适存在,使它成为独特的信使。利用中微子对太阳、超新星(该发现获2002年诺贝尔奖)和地球进行观测,给人类研究它们内部核反应过程提供了全新的手段。而暗物质主导了星系的起源和演化,决定着宇宙的大尺度结构,但是至今只被观测到了引力效应。

  另一方面,2012年Higgs粒子的最终发现(相关理论工作获2013年诺贝尔奖),宣告标准模型作为描述万物的自然法则经受了严格的实验检验,最终完整地建立起来。这也使得探寻超越标准模型的新物理变得更加迫切。中微子振荡与质量的发现(获2015年诺贝尔奖)是迄今唯一一个标准模型之外被证实的现象。围绕中微子的Charge-Parity对称检验、马约拉纳性以及轻子守恒检验、质量起源机制的研究都有望成为打开新物理大门的钥匙。超对称、镜像粒子、轴子、重中微子等的任何暗物质假说粒子被发现,都会给我们带来超出标准模型的新物理,为人类认知带来革命。

● 在地下粒子物理的实验研究中,续本达教授对大型液体探测器有着丰富经验。探测器中,液体与粒子相互作用发光,光子信号由液体容器边界上的光电倍增管等收集。光电倍增管是可以将单个光子转换成宏观电压脉冲的真空电子管器件。在粒子探测的实验技术中,续本达教授对新光子读出和调整数据采集方法,现代统计学方法,大数据方法和高性能计算尤其感兴趣。

● 锦屏中微子实验研究 清华大学人才引进项目 2018-08 ~ 2021-12 负责人

● Development of low radioactivity photomultiplier tubes for the XMASS-I detector,"Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",171-176,XMASS Collaboration,2019;

● Search for sub-GeV dark matter by annual modulation using XMASS-I detector,Physics Letters B,,XMASS Collaboration,2019;

● Search for WIMP-129Xe inelastic scattering with particle identification in XMASS-I,Astroparticle Physics,1-7,XMASS Collaboration,2019;

● A direct dark matter search in XMASS-I,Physics Letters B,45-53,XMASS Collaboration,2019;

● Identification of 210Pb and 210Po in the bulk of copper samples with a low-background alpha particle counter,"Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",157-161,XMASS Collaboration,2018;

● Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I,Progress of Theoretical and Experimental Physics,053D03,XMASS Collaboration,2018;

● Direct dark matter search by annual modulation with 2.7 years of XMASS-I data,Physical Review D,102006,XMASS Collaboration,2018;

● Search for dark matter in the form of hidden photons and axion-like particles in the XMASS detector,Physics Letters B,153-158,XMASS Collaboration,2018;

● A measurement of the scintillation decay time constant of nuclear recoils in liquid xenon with the XMASS-I detector,Journal of Instrumentation,P12032,XMASS Collaboration,2018;

● A machine learning approach to track identification in emulsion cloud chambers,XXVIII International Conference on Neutrino Physics and Astrophysics,,"Xu, Benda",2018;

● Search for solar Kaluza-Klein axions by annual modulation with the XMASS-I detector,Progress of Theoretical and Experimental Physics,,XMASS Collaboration,2017;

● Portage: Bringing Hackers' Wisdom to Science,arXiv preprint arXiv:1610.02742,,"Amadio, Guilherme; Xu, Benda; ",2016;

● KamLAND sensitivity to neutrinos from pre-supernova stars,The Astrophysical Journal,91,KamLAND Collaboration,2016;

● Search for double-beta decay of 136 Xe to excited states of 136 Ba with the KamLAND-Zen experiment,Nuclear Physics A,171-181,KamLAND-Zen Collaboration,2016;

● "XMASS 1.5: The next step in Kamioka, Japan",Journal of Physics: Conference Series,42064,"Xu, Benda",2016;

● Direct dark matter search by annual modulation in XMASS-I,Physics Letters B,272-276,XMASS Collaboration,2016;

● Results from kamland-zen,AIP Conference Proceedings,170003,KamLAND-Zen Collaboration,2015;

● Be-7 solar neutrino measurement with KamLAND,Physical Review C,55808,KamLAND Collaboration,2015;

● A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector,"Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",88-96,KamLAND Collaboration,2015;

● Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND,The Astrophysical Journal,87,KamLAND Collaboration,2015;

● Search for the proton decay mode p→ν¯K+ with KamLAND,Physical Review D,52006,KamLAND Collaboration,2015;

● Limit on Neutrinoless ββ Decay of Xe-136 from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in Ge-76, Physical Review Letters,62502,KamLAND-Zen Collaboration,2013;

● Reactor on-off antineutrino measurement with KamLAND,Physical Review D,33001,KamLAND Collaboration,2013;

● CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND,arXiv preprint arXiv:1312.0896,,KamLAND Collaboration and others,2013;

● White paper: CeLAND-Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND,arXiv preprint arXiv:1309.6805,,KamLAND Collaboration and others,2013;

● Measurement of the double-β decay half-life of 136 Xe with the KamLAND-Zen experiment,Physical Review C,45504,KamLAND-Zen Collaboration,2012;

● Limits on Majoron-emitting double-β decays of 136 Xe in the KamLAND-Zen experiment,Physical Review C,21601,KamLAND-Zen Collaboration,2012;

● Search for extraterrestrial antineutrino sources with the KamLAND detector,The Astrophysical Journal,193,KamLAND Collaboration,2012;

● Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,Physical Review D,52002,KamLAND Collaboration,2011;

● Measurement of the 8 B solar neutrino flux with the KamLAND liquid scintillator detector,Physical Review C,35804,KamLAND Collaboration,2011;

● Partial radiogenic heat model for Earth revealed by geoneutrino measurements,Nature Geoscience,647,KamLAND Collaboration,2011.

● 2011年—现在 Gentoo Linux 开发者

● 2015年—现在 Debian OS 维护者

  • 地址:清华大学工程物理系(刘卿楼)
  • 邮编:100084
  • 电话:010-62785727
  • 邮箱:gwbgs@mail.tsinghua.edu.cn
Copyright © 2020 清华大学工程物理系 All Right Reserved